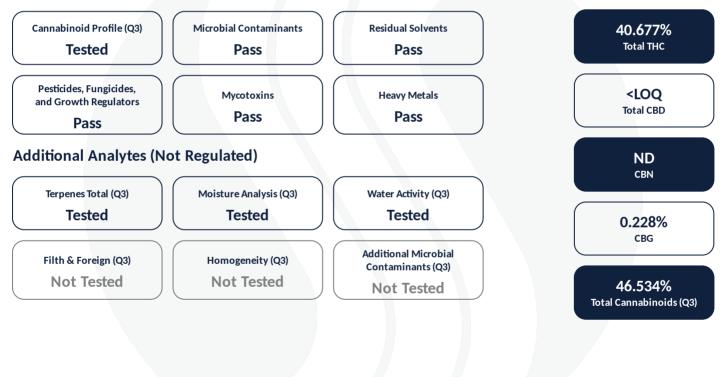


CERTIFICATE OF ANALYSIS

License #: 00000020LCVT89602592


(Jeeter) INFUSED BANANA PEEL PREROLL 0.5G X 5, 1G, 2G, 0.5G

Batch #: DFAZ-BANPEL-052325 Strain: Banana Peel Parent Batch #: Production Method: Indoor Harvest Date: 03/04/2025 Received: 05/23/2025 Sample ID: 2505SMAZ0818.2325 Amount Received: 11.9 g Sample Type: Enhanced/Infused Flowers Sample Collected: 05/23/2025 10:59:00 Manufacture Date: 05/23/2025 Published: 05/28/2025

COMPLIANCE FOR RETAIL

Regulated Analytes

Ahmed Munshi

Technical Laboratory Director

AMunshi

Smithers CTS Arizona LLC 734 W Highland Avenue, 2nd Floor Phoenix, AZ 85013 (602) 806-6930

Certificate: 13270

CERTIFICATE OF ANALYSIS

License #: 00000020LCVT89602592

Cannabinoi	d Profile	Sample Prep	Sample Analysis				
camabilion		Batch Date: 05/23/2025	Date: 05/27/2025 SOP: 417.AZ - HPLC				
HPLC	Tested	SOP: 418.AZ Batch Number: 3339 Test ID: 67183	SOP: 417.A2 - HPLC Sample Weight: 0.0430 g Volume: 40 mL				

LOD (mg/g)	LOQ (mg/g)	Dil.	Actual % (w/w)	mg/g	Qualifier
0.300	0.909	1	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
0.300	0.909	1	ND	ND	
0.300	0.909	1	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
0.300	0.909	1	ND	ND	
0.300	0.909	1	0.228	2.282	
0.300	0.909	1	0.482	4.820	
0.300	0.909	1	ND	ND	
0.300	0.909	1	ND	ND	
0.300	0.909	1	3.979	39.794	
0.300	0.909	1	41.845	418.446	
0.300	0.909	1	ND	ND	
	0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300	0.300 0.909 0.300 0.909 0.300 0.909 0.300 0.909 0.300 0.909 0.300 0.909 0.300 0.909 0.300 0.909 0.300 0.909 0.300 0.909 0.300 0.909 0.300 0.909 0.300 0.909 0.300 0.909 0.300 0.909	0.300 0.909 1 0.300 0.909 1 0.300 0.909 1 0.300 0.909 1 0.300 0.909 1 0.300 0.909 1 0.300 0.909 1 0.300 0.909 1 0.300 0.909 1 0.300 0.909 1 0.300 0.909 1 0.300 0.909 1 0.300 0.909 1 0.300 0.909 1	0.300 0.909 1 <loq< th=""> 0.300 0.909 1 ND 0.300 0.909 1 <loq< td=""> 0.300 0.909 1 <loq< td=""> 0.300 0.909 1 <loq< td=""> 0.300 0.909 1 ND 0.300 0.909 1 0.228 0.300 0.909 1 0.482 0.300 0.909 1 ND 0.300 0.909 1 ND 0.300 0.909 1 ND 0.300 0.909 1 3.979 0.300 0.909 1 41.845</loq<></loq<></loq<></loq<>	0.300 0.909 1 <loq< th=""> <loq< th=""> 0.300 0.909 1 ND ND 0.300 0.909 1 <loq< td=""> <loq< td=""> 0.300 0.909 1 <loq< td=""> <loq< td=""> 0.300 0.909 1 ND ND 0.300 0.909 1 ND ND 0.300 0.909 1 0.482 4.820 0.300 0.909 1 ND ND 0.300 0.909 1 3.979 39.794 0.300 0.909 1 41.845 418.446</loq<></loq<></loq<></loq<></loq<></loq<>

Cannabinoid Totals	Actual % (w/w)	mg/g	Qualifier
Total THC	40.677	406.771	
Total CBD	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Total Cannabinoids	46.534	465.342	Q3

Total THC = THC + (0.877 x THCA) and Total CBD = CBD + (0.877 x CBDA) ND = Not Detected, NT = Not Tested, <LOQ = Below Limit of Quantitation

Ahmed Munshi

Technical Laboratory Director

AMMunshi

Smithers CTS Arizona LLC 734 W Highland Avenue, 2nd Floor Phoenix, AZ 85013 (602) 806-6930

Certificate: 13270

CERTIFICATE OF ANALYSIS

License #: 00000020LCVT89602592

Terpene Total

GC-FID

Tested (3.8319%)

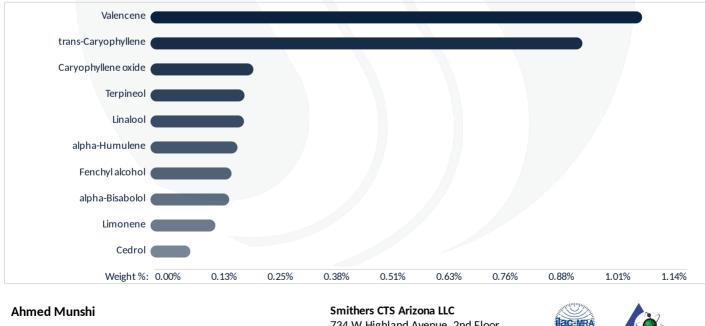
Jeeter

2626 South Roosevelt Street

Batch #: DFAZ-BANPEL-052325

License #: 00000066DCBO00410690 Sample ID: 2505SMAZ0818.2325

Tempe, AZ 85282


Sample Prep

Batch Date: 05/27/2025 SOP: 419 Batch Number: 3351

Sample Analysis

Date: 05/28/2025 SOP: 419 - GC-FID Sample Weight: 0.432 g Volume: 10 mL

Analyte	LOD / LOQ (%)	Dil.	Results (%)	Qualifier	Analyte	LOD / LOQ (%)	Dil.	Results (%)	Qualifier
alpha-Bisabolol	0.0009 / 0.0028	1	0.1821	Q3	gamma-Terpinene	0.0009 / 0.0028	1	ND	Q3
alpha-Cedrene	0.0009 / 0.0028	1	ND	Q3	Geraniol	0.0009 / 0.0028	1	0.0041	Q3
alpha-Humulene	0.0009 / 0.0028	1	0.2012	Q3	Geranyl acetate	0.0009 / 0.0028	1	ND	Q3
alpha-Phellandrene	0.0009 / 0.0028	1	ND	Q3	Guaiol	0.0009 / 0.0028	1	ND	Q3
alpha-Pinene	0.0009 / 0.0028	1	0.0109	Q3	Hexahydrothymol	0.0009 / 0.0028	1	ND	Q3
alpha-Terpinene	0.0009 / 0.0028	1	ND	Q3	Isoborneol	0.0009 / 0.0028	1	0.0265	Q3
beta-Myrcene	0.0009 / 0.0028	1	0.0421	Q3	Isopulegol	0.0009 / 0.0028	1	ND	Q3
beta-Pinene	0.0009 / 0.0028	1	0.0202	Q3	Limonene	0.0009 / 0.0028	1	0.1501	Q3
Borneol	0.0009 / 0.0028	1	0.0144	Q3	Linalool	0.0009 / 0.0028	1	0.2163	Q3
Camphene	0.0009 / 0.0028	1	0.0040	Q3	Nerol	0.0009 / 0.0028	1	ND	Q3
Camphor	0.0009 / 0.0028	1	0.0048	Q3	Pulegone (+)	0.0009 / 0.0028	1	ND	Q3
3-Carene	0.0009 / 0.0028	1	ND	Q3	Sabinene Hydrate	0.0009 / 0.0028	1	<loq< td=""><td>Q3</td></loq<>	Q3
Caryophyllene oxide	0.0009 / 0.0028	1	0.2380	Q3	Terpineol	0.0009 / 0.0028	1	0.2175	Q3
Cedrol	0.0009 / 0.0028	1	0.0922	Q3	Terpinolene	0.0009 / 0.0028	1	ND	Q3
cis-Nerolidol	0.0009 / 0.0028	1	ND	Q3	trans-Caryophyllene	0.0009 / 0.0028	1	0.9992	Q3
cis-Ocimene	0.0009 / 0.0028	1	<loq< td=""><td>Q3</td><td>trans-Nerolidol</td><td>0.0009 / 0.0028</td><td>1</td><td>0.0717</td><td>Q3</td></loq<>	Q3	trans-Nerolidol	0.0009 / 0.0028	1	0.0717	Q3
Fenchyl alcohol	0.0009 / 0.0028	1	0.1875	Q3	trans-Ocimene	0.0009 / 0.0028	1	0.0079	Q3
Eucalyptol	0.0009 / 0.0028	1	<loq< td=""><td>Q3</td><td>Valencene</td><td>0.0009 / 0.0028</td><td>1</td><td>1.1373</td><td>Q3</td></loq<>	Q3	Valencene	0.0009 / 0.0028	1	1.1373	Q3
Fenchone	0.0009 / 0.0028	1	0.0039	Q3					

Technical Laboratory Director

Smithers CTS Arizona LLC 734 W Highland Avenue, 2nd Floor Phoenix, AZ 85013 (602) 806-6930

The product associated with this COA has been tested by Smithers CTS Arizona LLC, using validated state certified testing methodologies as required by Arizona state law. Testing results were obtained according to Smithers' quality assurance plan and requirements found in R9-17-404.03 and R9-17-404.04. This COA is governed by the terms and conditions listed on: https://www.smithers.com/arizona-terms-conditions

AMunshi

Certificate: 13270

CERTIFICATE OF ANALYSIS

License #: 0000020LCVT89602592

Microbial An	alysis			
	Pass			
	Sample Prep		Sample Analysi	S
Batch Date: 05/27/2025 GOP: 412.AZ Batch Number: 3356 Fest ID: 67201		Date: 05/28/2025 SOP: 412.AZ - 3M Pe Sample Weight: 1.0		
Analyte	Allowable Criteria	Actual Result	Pass/Fail	Qualifier
E. coli	< 100 CFU/g	< 100 CFU/g	Pass	
Batch Date: 05/27/2025 SOP: 406.AZ Batch Number: 3353 Test ID: 67202 Analyte	Allowable Criteria	Date: 05/28/2025 SOP: 406.AZ - qPCR Sample Weight: 1.0 Actual Result		Qualifier
Salmonella	Not Detected in One Gram	Not Detected in One Gram	Pass	
Salmonella Batch Date: 05/27/2025 50P: 406.AZ Batch Number: 3353	Not Detected in One Gram	Not Detected in One Gram Date: 05/28/2025 SOP: 406.AZ - qPCR Sample Weight: 1.0	Sample Analysi	s
Batch Date: 05/27/2025 50P: 406.AZ Batch Number: 3353		Date: 05/28/2025 SOP: 406.AZ - qPCR	Sample Analysi	S Qualifier
Batch Date: 05/27/2025 OP: 406.AZ Batch Number: 3353 Test ID: 67204 Analyte	Sample Prep	Date: 05/28/2025 SOP: 406.AZ - qPCR Sample Weight: 1.0	Sample Analysi (MG) Ю9g	
Batch Date: 05/27/2025 SOP: 406.AZ Batch Number: 3353 Test ID: 67204 Analyte Aspergillus flavus	Sample Prep Allowable Criteria	Date: 05/28/2025 SOP: 406.AZ - qPCR Sample Weight: 1.0 Actual Result	Sample Analysi (MG) Ю9 g Pass/Fail	
Batch Date: 05/27/2025 50P: 406.AZ Batch Number: 3353 Test ID: 67204	Sample Prep Allowable Criteria Not Detected in One Gram	Date: 05/28/2025 SOP: 406.AZ - qPCR Sample Weight: 1.0 Actual Result Not Detected in One Gram	Sample Analysi (MG) X09 g Pass/Fail Pass	

Ahmed Munshi

Technical Laboratory Director

AMMunshi

Smithers CTS Arizona LLC 734 W Highland Avenue, 2nd Floor Phoenix, AZ 85013 (602) 806-6930

Certificate: 13270

CERTIFICATE OF ANALYSIS

License #: 00000020LCVT89602592

Residual S	Residual Solvents				e Prep	Sample Analysis					
Residual solvents				Batch Date: 05/27/2025			Date: 05/28/2025 SOP: 405.AZ - HS-GC-MS				
HS-GC-MS Pass				SOP: 405.AZ Batch Number: 3343 Test ID: 67184			SOP: 405.AZ - HS-GC-MS Sample Weight: 0.0503 g				
Analyte	LOD / LOQ (ppm)	Dil.	Action Limit (ppm)	Results (ppm)	Qualifier	Analyte	LOD / LOQ (ppm)	Dil.	Action Limit (ppm)	Results (ppm)	Qualifier

Analyte	LOD / LOQ (ppm)	Dil.	Limit (ppm)	(ppm)	Qualifier	Analyte	LOD / LOQ (ppm)	Dil.	Limit (ppm)	(ppm)	Qualifie
Acetone	66 / 199	1	1000	<loq< td=""><td></td><td>Heptane</td><td>332 / 994</td><td>1</td><td>5000</td><td>ND</td><td></td></loq<>		Heptane	332 / 994	1	5000	ND	
Acetonitrile	28 / 82	1	410	ND		Hexanes	48 / 144	1	290	ND	
Benzene	0.14 / 0.40	1	2	ND		lsopropyl acetate	332 / 994	1	5000	ND	
Butanes	165 / 497	1	5000	ND		Methanol	199 / 596	1	3000	<loq< td=""><td></td></loq<>	
Chloroform	4/12	1	60	ND		Pentanes	332 / 994	1	5000	ND	
Dichloromethane	40 / 119	1	600	ND		2-Propanol (IPA)	332 / 994	1	5000	ND	
Ethanol	332 / 994	1	5000	ND		Toluene	60 / 177	1	890	ND	
Ethyl acetate	332 / 994	1	5000	ND		Xylenes	288 / 863	1	2170	ND	
Ethyl ether	332 / 994	1	5000	ND							

Ahmed Munshi

Technical Laboratory Director

AMMunshi

Smithers CTS Arizona LLC 734 W Highland Avenue, 2nd Floor Phoenix, AZ 85013 (602) 806-6930

Certificate: 13270

CERTIFICATE OF ANALYSIS

License #: 00000020LCVT89602592

Heavy Metals		Sample Prep	Sample Analysis
ricary rictar	5	Batch Date: 05/27/2025	Date: 05/27/2025
		SOP: 428.AZ	SOP: 428.AZ - ICP-MS
ICP-MS	Pass	Batch Number: 3346	Sample Weight: 0.217 g
ICP-IVIS	1 435	Test ID: 67185	Volume: 6 mL

Analyte	LOD (ppm)	LOQ (ppm)	Dil.	Action Limit (ppm)	Results (ppm)	Qualifier
Arsenic	0.053	0.178	10	0.4	ND	
Cadmium	0.053	0.178	10	0.4	ND	
Lead	0.053	0.445	10	1	ND	
Mercury	0.053	0.089	10	0.2	ND	

Mycotoxin /	Analysis
LC-MS/MS	Pass

Sample Prep Batch Date: 05/27/2025 SOP: 432.AZ Batch Number: 3342 Test ID: 67189 Sample Analysis

Date: 05/28/2025 SOP: 424.AZ - LC-MS/MS Sample Weight: 0.532 g Volume: 12.5 mL

Analyte	LOD (ppb)	LOQ (ppb)	Dil.	Action Limit (ppb)	Results (ppb)	Qualifier
Total Aflatoxins	3.76	9.40	1	20	ND	R1
Aflatoxin B1	3.76	9.40	1		ND	
Aflatoxin B2	3.76	9.40	1		ND	R1
Aflatoxin G1	3.76	9.40	1		ND	R1
Aflatoxin G2	3.76	4.70	1		ND	
Ochratoxin A	9.40	9.40	1	20	ND	11, V1

Ahmed Munshi

Technical Laboratory Director

AMMunshi

Smithers CTS Arizona LLC 734 W Highland Avenue, 2nd Floor Phoenix, AZ 85013 (602) 806-6930

CERTIFICATE OF ANALYSIS

License #: 0000020LCVT89602592

Pesticides, Fungicides, and **Growth Regulators** Pass

LC-MS/MS

Sample Prep Batch Date: 05/27/2025 SOP: 432.AZ Batch Number: 3342

Test ID: 67188

Sample Analysis

Date: 05/28/2025 SOP: 424.AZ - LC-MS/MS Sample Weight: 0.532 g Volume: 12.5 mL

Analyte	LOD / LOQ (ppm)	Dil.	Action Limit (ppm)	Results (ppm)	Qualifier	Analyte	LOD / LOQ (ppm)	Dil.	Action Limit (ppm)	Results (ppm)	Qualifier
Abamectin B1a	0.078 / 0.235	1	0.5	ND		Hexythiazox	0.157 / 0.470	1	1	ND	
Acephate	0.063 / 0.188	1	0.4	ND		Imazalil	0.031/0.094	1	0.2	ND	
Acetamiprid	0.031/0.094	1	0.2	ND		Imidacloprid	0.063 / 0.188	1	0.4	ND	
Aldicarb	0.063 / 0.188	1	0.4	ND		Kresoxim-methyl	0.063 / 0.188	1	0.4	ND	
Azoxystrobin	0.031/0.094	1	0.2	ND		Malathion	0.031/0.094	1	0.2	ND	
Bifenazate	0.031/0.094	1	0.2	ND		Metalaxyl	0.031/0.094	1	0.2	ND	
Bifenthrin	0.031 / 0.094	1	0.2	ND		Methiocarb	0.031/0.094	1	0.2	ND	
Boscalid	0.063 / 0.188	1	0.4	ND		Methomyl	0.063 / 0.188	1	0.4	ND	
Carbaryl	0.031/0.094	1	0.2	ND		Myclobutanil	0.031/0.094	1	0.2	ND	
Carbofuran	0.031 / 0.094	1	0.2	ND		Naled	0.078 / 0.235	1	0.5	ND	
Chlorantraniliprole	0.031 / 0.094	1	0.2	ND		Oxamyl	0.157 / 0.470	1	1	ND	
Chlorfenapyr	0.157 / 0.470	1	1	ND		Paclobutrazol	0.063 / 0.188	1	0.4	ND	
Chlorpyrifos	0.031/0.094	1	0.2	ND		Permethrins	0.031/0.094	1	0.2	ND	
Clofentezine	0.031/0.094	1	0.2	ND		Phosmet	0.031/0.094	1	0.2	ND	
Cyfluthrin	0.157 / 0.470	1	1	ND		Piperonyl Butoxide	0.313 / 0.940	1	2	ND	
Cypermethrin	0.157 / 0.470	1	1	ND		Prallethrin	0.031/0.094	1	0.2	ND	
Daminozide	0.157 / 0.470	1	1	ND		Propiconazole	0.063 / 0.188	1	0.4	ND	
Diazinon	0.031/0.094	1	0.2	ND		Propoxur	0.031/0.094	1	0.2	ND	
Dichlorvos	0.016 / 0.047	1	0.1	ND		Pyrethrins	0.131 / 0.394	1	1	ND	
Dimethoate	0.031/0.094	1	0.2	ND		Pyridaben	0.031/0.094	1	0.2	ND	
Ethoprophos	0.031/0.094	1	0.2	ND		Spinosad	0.031/0.094	1	0.2	ND	
Etofenprox	0.063 / 0.188	1	0.4	ND		Spiromesifen	0.031/0.094	1	0.2	ND	
Etoxazole	0.031/0.094	1	0.2	ND		Spirotetramat	0.031/0.094	1	0.2	ND	
Fenoxycarb	0.031/0.094	1	0.2	ND		Spiroxamine	0.063 / 0.188	1	0.4	ND	
Fenpyroximate	0.063 / 0.188	1	0.4	ND		Tebuconazole	0.063 / 0.188	1	0.4	ND	
Fipronil	0.063 / 0.188	1	0.4	ND	R1	Thiacloprid	0.031 / 0.094	1	0.2	ND	
Flonicamid	0.157 / 0.470	1	1	ND		Thiamethoxam	0.031/0.094	1	0.2	ND	
Fludioxonil	0.063 / 0.188	1	0.4	ND		Trifloxystrobin	0.031 / 0.094	1	0.2	ND	

Ahmed Munshi

Technical Laboratory Director

AMMunshi

Smithers CTS Arizona LLC 734 W Highland Avenue, 2nd Floor Phoenix, AZ 85013 (602) 806-6930

Certificate: 13270

CERTIFICATE OF ANALYSIS

License #: 00000020LCVT89602592

Moisture Analysis

Jeeter

2626 South Roosevelt Street

Batch #: DFAZ-BANPEL-052325

License #: 00000066DCBO00410690 Sample ID: 2505SMAZ0818.2325

Tempe, AZ 85282

Moisture: **8.68 %** Qualifier: Q3

Sample Prep and Analysis

Date: 05/23/2025 SOP: 411 - Moisture Balance Sample Weight: 0.311 g

Water Activity

Water Activity: 0.3731AW aw Qualifier: Q3

Sample Prep and Analysis

Date: 05/23/2025 SOP: 433 - Water Activity Meter Sample Weight: 0.463 g

Ahmed Munshi

Technical Laboratory Director

AMMunshi

Smithers CTS Arizona LLC 734 W Highland Avenue, 2nd Floor Phoenix, AZ 85013 (602) 806-6930

CERTIFICATE OF ANALYSIS

License #: 0000020LCVT89602592

Certificate: 13270

Qualifier Legend

- B1 The target analyte detected in the calibration is at or above the limit of quantitation, but the sample result for potency testing, is below the limit of quantitation.
- B2 The target analyte detected in the calibration blank, or the method blank is at or above the limit of quantitation, but the sample result when testing for pesticides, fungicides, herbicides, growth regulators, heavy metals, or residual solvents, is below the maximum allowable concentration for the analyte.
- D1 The limit of quantitation and the sample results were adjusted to reflect sample dilution.
- 1 The relative intensity of a characteristic ion in a sample analyte exceeded the acceptance with respect to the reference spectra, indicating interference.
- When testing for pesticides, fungicides, herbicides, growth regulators, heavy metals, or residual solvents, the percent recovery of a laboratory control sample is greater than the acceptance limits, but the sample's target analytes were not detected above the maximum allowable concentrations for the analytes in the sample.
- M1 The recovery from the matrix spike was high, but the recovery from the laboratory control sample was within acceptance criteria.
- M2 The recovery from the matrix spike was low, but the recovery from the laboratory control sample was within acceptance criteria.
- M3 The recovery from the matrix spike was unusable because the analyte concentration was disproportionate to the spike level, but the recovery from the laboratory control sample was within acceptance criteria.
- M4 The analysis of a spiked sample required a dilution such that the spike recovery calculation does not provide useful information, but the recovery from the associated laboratory control sample was within acceptance criteria.
- M5 The analyte concentration was determined by the method of standard addition, in which the standard is added directly to the aliquots of the analyzed sample.
- M6 A description of the variance is described in the final report of testing according to R9-17-404.06(B)(3)(d)(ii).
- Q1 Sample integrity was not maintained.
- Q2 The sample is heterogeneous, and sample homogeneity could not be readily achieved using routine laboratory practices.
- Q3 Testing result is for informational purposes only and cannot be used to satisfy dispensary testing requirements in R9-17-317.01(A) or labeling requirem
- R1 The relative percent difference for the laboratory control sample and duplicate exceeded the limit, but the recovery was within acceptance criteria.
- R2 The relative percent difference for a sample and duplicate exceeded the limit.
- V1 The recovery from continuing calibration verification standards exceeded the acceptance limits, but the sample's target analytes were not detected above the maximum allowable for the analytes in the sample.

Cultivated By:

Manufactured By:

Disclaimer: Using marijuana during pregnancy could cause birth defects or other health issues to your unborn child.

Ahmed Munshi

Technical Laboratory Director

AMMunshi

Smithers CTS Arizona LLC 734 W Highland Avenue, 2nd Floor Phoenix, AZ 85013 (602) 806-6930

Certificate: 13270

CERTIFICATE OF ANALYSIS License #: 00000020LCVT89602592

Notes: Method of Extraction: Pressed & Hydrocarbon

Ahmed Munshi

Technical Laboratory Director

AMMunshi

Smithers CTS Arizona LLC 734 W Highland Avenue, 2nd Floor Phoenix, AZ 85013 (602) 806-6930

