Pass

DIME Forbidden Apple

Sample ID: 2504APO1669.8780 Strain: Forbidden Apple Matrix: Concentrates & Extracts Type: Distillate Source Batch #: 031025

Produced: Collected: 04/16/2025 08:59 am Received: 04/16/2025 Completed: 04/18/2025 Batch #: FA0415 Harvest Date: 07/01/2024

Client

Dime Industries Lic. # 00000075ESJK64208740

Lot #: 031025

Production/Manufacture Date: 04/15/2025 Production/Manufacture Method: Alcohol

Summary

Test Batch

Cannabinoids Microbials

Date Tested Result

04/16/2025 Complete 04/17/2025 **Pass**

Cannabinoids by SOP-6

Complete

89.1809%

Total THC

2.8251%

Total CBD

95.8876%

Total Cannabinoids (Q3)

NT

Total Terpenes

LOD	LOQ	Result	Result			q
%	%	%	mg/g			
	0.1000	ND	ND			
	0.1000	89.1809	891.809			
	0.1000	3.5531	35.531			
	0.1000	0.3285	3.285			
	0.1000	ND	ND			
	0.1000	2.8251	28.251			
	0.1000	ND	ND			
	0.1000	ND	ND			
	0.1000	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
	0.1000	ND	ND			
	0.1000	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
	0.1000	ND	ND			
		89.1809	891.8090			
		2.8251	28.2510			
		95.8876	958.876			
	LOD	LOD LOQ % % 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	LOD LOQ Result % % % 0.1000 ND 0.1000 89.1809 0.1000 3.5531 0.1000 ND 0.1000 ND	LOD LOQ Result Result % % mg/g 0.1000 ND ND 0.1000 89.1809 891.809 0.1000 3.5531 35.531 0.1000 0.3285 3.285 0.1000 ND ND 89.1809 891.8090 2.8251 28.2510	LOD LOQ Result Result % % mg/g 0.1000 ND ND 0.1000 89.1809 891.809 0.1000 3.5531 35.531 0.1000 0.3285 3.285 0.1000 ND ND 0.1000 ND ND <	LOD LOQ Result Result % % mg/g 0.1000 ND ND 0.1000 89.1809 891.809 0.1000 3.5531 35.531 0.1000 0.3285 3.285 0.1000 ND ND 0.1000 2.8251 28.251 0.1000 ND ND 89.1809 891.8090 2.8251 28.2510

Date Tested: 04/16/2025 07:00 am

Anthony Settanni

Lab Director 04/18/2025

Confident LIMS All Rights Reserved coa.support@confidentlims.com (866) 506-5866 www.confidentlims.com

ARIZONA DEPARTMENT OF HEALTH SERVICES' WARNING:
Marijuana use can be addictive and can impair an individual's ability to drive a motor vehicle or operate heavy machinery. Marijuana smoke contains carcinogens and can lead to an increased risk for cancer, tachycardia, hypertension, heart attack, and lung infection. Marijuana use may affect the health of a pregnant woman and the unborn child. Using marijuana during pregnancy could cause birth defects or other health issues to your unborn child;
KEEP OUT OF REACH OF CHILDREN.
The product associated with the COA has been tested by Apollo Labs using validated state certified testing methodologies as required by Arizona state law. Values reported herein relate only to the specific sample of

Apollo Labs 17301 North Perimeter Drive Scottsdale, AZ 85255

(602) 767-7600 http://www.apollolabscorp.com Lic# 00000013LCRK62049775

2 of 3

DIME Forbidden Apple

Sample ID: 2504APO1669.8780 Strain: Forbidden Apple Matrix: Concentrates & Extracts Type: Distillate Source Batch #: 031025

Produced: Collected: 04/16/2025 08:59 am Received: 04/16/2025 Completed: 04/18/2025 Batch #: FA0415 Harvest Date: 07/01/2024

Client

Dime Industries Lic. # 00000075ESJK64208740

Lot #: 031025

Production/Manufacture Date: 04/15/2025 Production/Manufacture Method: Alcohol

Analyte		Limit	Result	Status	Ç
Salmonella SPP by QPCR: SOP-15	Detected/Not Detec		ND	Pass	
Aspergillus Flavus Aspergillus Fumigatus or Aspergillus Niger by QPCR: SOP-14	Detected/Not Detec	ted in 1g	ND	Pass	
Aspergillus Terreus by QPCR: SOP-14	Detected/Not Detec	ted in 1g	ND	Pass	
Analyte	LOQ	Limit	Result	Status	C
	CFU/g	CFU/g	CFU/g	_	
E. Coli by traditional plating: SOP-13	10.0	100.0	< 10 CFU/g	Pass	
Date Tested: 04/17/2025 12:00 am					
Mycotoxins by SOP-22					Not Tested
Analyte	LOO	Limit	Units	Status	
Date Tested:					
Date Tested: Heavy Metals by SOP-21					Not Tested
	Loq	Limit	Units	Status	Not Tested

Date Tested:

theham Sett Anthony Settanni Lab Director

Confident LIMS All Rights Reserved coa.support@confidentlims.com (866) 506-5866 www.confidentlims.com

04/18/2025 ARIZONA DEPARTMENT OF HEALTH SERVICES' WARNING:
Marijuana use can be addictive and can impair an individual's ability to drive a motor vehicle or operate heavy machinery. Marijuana smoke contains carcinogens and can lead to an increased risk for cancer, tachycardia, hypertension, heart attack, and lung infection. Marijuana use may affect the health of a pregnant woman and the unborn child. Using marijuana during pregnancy could cause birth defects or other health issues to your unborn child;
KEEP OUT OF REACH OF CHILDREN.
The product associated with the COA has been tested by Apollo Labs using validated state certified testing methodologies as required by Arizona state law. Values reported herein relate only to the specific sample of

Apollo Labs 17301 North Perimeter Drive Scottsdale, AZ 85255

(602) 767-7600 http://www.apollolabscorp.com Lic# 00000013LCRK62049775

3 of 3

DIME Forbidden Apple

Sample ID: 2504APO1669.8780 Strain: Forbidden Apple Matrix: Concentrates & Extracts Type: Distillate Source Batch #: 031025

Produced: Collected: 04/16/2025 08:59 am Received: 04/16/2025 Completed: 04/18/2025 Batch #: FA0415 Harvest Date: 07/01/2024

Client

Dime Industries Lic. # 00000075ESJK64208740

Lot #: 031025 Production/Manufacture Date: 04/15/2025 Production/Manufacture Method: Alcohol

Qualifiers Definitions

Qualifier Notation	Qualifier Description
l1	The relative intensity of a characteristic ion in a sample analyte exceeded the acceptance criteria in subsection $(L)(1)$ with respect to the reference spectra, indicating interference
L1	When testing for pesticides, fungicides, herbicides, growth regulators, heavy metals, or residual solvents, the percent recovery of a laboratory control sample is greater than the acceptance limits in subsection $(K)(2)(c)$, but the sample's target analytes were not detected above the maximum allowable concentrations in Table 3.1 for the analytes in the sample
M1	The recovery from the matrix spike in subsection (K)(4) was: a. High, but the recovery from the laboratory control sample in subsection (K)(2) was within acceptance criteria
M2	The recovery from the matrix spike in subsection (K)(4) was: b. Low, but the recovery from the laboratory control sample in subsection (K)(2) was within acceptance criteria
М3	The recovery from the matrix spike in subsection (K)(4) was: c. Unusable because the analyte concentration was disproportionate to the spike level, but the recovery from the laboratory control sample in subsection (K)(2) was within acceptance criteria
R1	The relative percent difference for the laboratory control sample and duplicate exceeded the limit in subsection $(K)(3)$, but the recovery in subsection $(K)(2)$ was within acceptance criteria
V1	The recovery from continuing calibration verification standards exceeded the acceptance limits in subsection (J) (1)(b), but the sample's target analytes were not detected above the maximum allowable concentrations in Table 3.1 for the analytes in the sample
Q2	The sample is heterogeneous, and sample homogeneity could not be readily achieved using routine laboratory practices – Used to denote that the sample as-received could not be fully pre-homogenized in packaging prior to microbiology analysis
Q3	Testing result is for informational purposes only and cannot be used to satisfy dispensary testing requirements in R9-17-317.01(A) or labeling requirements in R9-17-317

Customer Supplied Information:

Notes and Addenda:

Bryant Kearl Chief Scientific Officer 04/18/2025

Confident LIMS All Rights Reserved coa.support@confidentlims.com (866) 506-5866 www.confidentlims.com

ARIZONA DEPARTMENT OF HEALTH SERVICES' WARNING:
Marijuana use can be addictive and can impair an individual's ability to drive a motor vehicle or operate heavy machinery. Marijuana smoke contains carcinogens and can lead to an increased risk for cancer, tachycardia, hypertension, heart attack, and lung infection. Marijuana use may affect the health of a pregnant woman and the unborn child. Using marijuana during pregnancy could cause birth defects or other health issues to your unborn child;
KEEP OUT OF REACH OF CHILDREN.
The product associated with the COA has been tested by Apollo Labs using validated state certified testing methodologies as required by Arizona state law. Values reported herein relate only to the specific sample of

(561) 322-9740 **Certificate of Analysis** Kaycha Labs 031025

Hybrid Matrix: Concentrate Classification: Hybrid Type: Distillate

Pages 1 of 5

PASSED

Harvest/Lot ID: 031025 Batch #: 031025 Harvest Date: 07/01/24 Manufacturing Date: 03/10/25 Production Method: Other Retail Product Size: 10 gram **Retail Serving Size: 10**

Sampled: 03/28/25 Sampling Method: N/A Completed: 04/02/25 **Revised:** 04/03/25

Lab ID: TE50328009-001

Sample Collection Time: 02:15 PM Sample Size: 18.97 gram

Servings: 1

Goldsmith Extracts

1225 west deer valley road Phoenix, AZ, 85027, US

License #: 0000156ESTDP70697204

SAFETY RESULTS

0

Total THC

Total CBD

MISC.

Pesticide **PASSED** Heavy Metals **PASSED**

Microbial **PASSED**

Mycotoxins **PASSED**

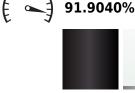
PASSED

Filth/Foreign Water Activity Material **NOT TESTED**

NOT TESTED

Moisture Content **NOT TESTED**

Vitamin E **Terpenes** NOT TESTED NOT TESTED



Cannabinoid

PASSED

Total Cannabinoids Q3

98.2685%

D9-THC	THCA	CBD	CBDA	CBG	CBGA	CBN	D8-THC	THCV	CBDV	CBC
91.9040	ND	ND	ND	3.2855	ND	1.1315	ND	0.7280	ND	1.0385
919.040	ND	ND	ND	32.855	ND	11.315	ND	7.280	ND	10.385
0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010
%	%	%	%	%	%	%	%	%	%	%

Oualifier

LOQ

Analyzed by: 540, 547, 333, 545 Weight: Extraction date: Extracted by: 03/29/25 18:16:13

Analysis Method : N/A Analytical Batch : TE008230POT

Instrument Used: TE-245 "Buttercup" (Infused)
Analyzed Date: 04/01/25 12:33:32

Dilution: 800 Reagent: N/A Consumables: N/A

Full spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with Photo Diode Array detector (HPLC-PDA) for analysis. (Methods: SOP.T.30.500 for sample homogenization, SOP.T.30.031 for sample prep, SOP.T.40.031 for analysis on Shimadzu LC-20X0 series HPLCs). Potency results for cannabis flower products are reported on an "as received" basis, without moisture correction.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State-determined thresholds based on the action limits published in Table 3.1 of 9 A.A.C. 17 and 9 A.A.C. 18. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors. Testing results were obtained according to requirements stated in QMS.100.010.AZ Quality Manual.

Madison Levy

Batch Date: 03/29/25 12:16:05

Lab Director

00000024LCMD66604568 ISO 17025 Accreditation # 97164

Corrected harvest date Revision: #2 -Corrected harvest date, changed strain name

Revision: #1 -

Signature 04/02/25

Kaycha Labs 031025 Hybrid

Hybrid Matrix: Concentrate Classification: Hybrid Type: Distillate

Pages 2 of 5

Certificate of Analysis

Sample: TE50328009-001 Goldsmith Extracts Telephone: (480) 720-3039

Email: goldsmithextracts@gmail.com

Harvest/Lot ID: 031025 **Batch #:** 031025

Ordered: 03/28/25 Sampled: 03/28/25 Completed: 04/02/25

PASSED

Pesticide

PASSED

ANALYTES	UNIT	LOD	LOQ	ACTION LEVEL	PASS/FAIL	RESULT	QUALIFIER
AVERMECTINS (ABAMECTIN B1A)	ppm	0.017	0.25	0.5	PASS	ND	
ACEPHATE	ppm	0.01	0.2	0.4	PASS	ND	
ACETAMIPRID	ppm	0.005	0.1	0.2	PASS	ND	
ALDICARB	ppm	0.014	0.2	0.4	PASS	ND	
AZOXYSTROBIN	ppm	0.005	0.1	0.2	PASS	ND	
BIFENAZATE	ppm	0.006	0.1	0.2	PASS	ND	
BIFENTHRIN	ppm	0.005	0.1	0.2	PASS	0.1820	
BOSCALID	ppm	0.005	0.2	0.4	PASS	ND	
CARBARYL	ppm	0.008	0.1	0.2	PASS	ND	
CARBOFURAN	ppm	0.005	0.1	0.2	PASS	ND	
CHLORANTRANILIPROLE	ppm	0.011	0.1	0.2	PASS	ND	
CHLORPYRIFOS	ppm	0.005	0.1	0.2	PASS	ND	
CLOFENTEZINE	ppm	0.01	0.1	0.2	PASS	ND	
CYPERMETHRIN	ppm	0.1	0.5	1	PASS	ND	
DIAZINON	ppm	0.006	0.1	0.2	PASS	ND	
DAMINOZIDE	ppm	0.01	0.5	1	PASS	ND	
DICHLORVOS (DDVP)	ppm	0.001	0.05	0.1	PASS	ND	
DIMETHOATE	ppm	0.006	0.1	0.2	PASS	ND	
ETHOPROPHOS	ppm	0.004	0.1	0.2	PASS	ND	
ETOFENPROX	ppm	0.006	0.2	0.4	PASS	ND	
ETOXAZOLE	ppm	0.004	0.1	0.2	PASS	ND	
FENOXYCARB	ppm	0.005	0.1	0.2	PASS	ND	
FENPYROXIMATE	ppm	0.004	0.2	0.4	PASS	ND	
FIPRONIL	ppm	0.006	0.2	0.4	PASS	ND	
FLONICAMID	ppm	0.009	0.5	1	PASS	ND	
FLUDIOXONIL	ppm	0.006	0.2	0.4	PASS	ND	
HEXYTHIAZOX	ppm	0.005	0.5	1	PASS	ND	M2
IMAZALIL	ppm	0.011	0.1	0.2	PASS	ND	
IMIDACLOPRID	ppm	0.008	0.2	0.4	PASS	ND	
KRESOXIM-METHYL	ppm	0.007	0.2	0.4	PASS	ND	
MALATHION	ppm	0.007	0.1	0.2	PASS	ND	
METALAXYL	ppm	0.004	0.1	0.2	PASS	ND	
METHIOCARB	ppm	0.004	0.1	0.2	PASS	ND	
METHOMYL	ppm	0.005	0.2	0.4	PASS	ND	
MYCLOBUTANIL	ppm	0.01	0.1	0.2	PASS	ND	
NALED	ppm	0.007	0.25	0.5	PASS	ND	
OXAMYL	ppm	0.008	0.5	1	PASS	ND	
PACLOBUTRAZOL	ppm	0.005	0.2	0.4	PASS	ND	
TOTAL PERMETHRINS	ppm	0.003	0.1	0.2	PASS	ND	
PHOSMET	ppm	0.01	0.1	0.2	PASS	ND	
PIPERONYL BUTOXIDE	ppm	0.005	1	2	PASS	ND	
PRALLETHRIN	ppm	0.013	0.1	0.2	PASS	ND	
PROPICONAZOLE	ppm	0.005	0.2	0.4	PASS	ND	
PROPOXUR	ppm	0.005	0.1	0.2	PASS	ND	
TOTAL PYRETHRINS	ppm	0.001	0.5	1	PASS	ND	
PYRIDABEN	ppm	0.004	0.1	0.2	PASS	ND	
TOTAL SPINOSAD	ppm	0.006	0.1	0.2	PASS	ND	
SPIROMESIFEN	ppm	0.008	0.1	0.2	PASS	ND	
SPIROTETRAMAT	ppm	0.006	0.1	0.2	PASS	ND	
SPIROXAMINE	ppm	0.004	0.2	0.4	PASS	ND	
TEBUCONAZOLE	ppm	0.004	0.2	0.4	PASS	ND	
THIACLOPRID	ppm	0.006	0.1	0.2	PASS	ND	
THIAMETHOXAM	ppm	0.006	0.1	0.2	PASS	ND	
TRIFLOXYSTROBIN	ppm	0.006	0.1	0.2	PASS	ND	
CHLORFENAPYR	ppm	0.027	0.3	1	PASS	ND	M2
CYFLUTHRIN	ppm	0.015	0.5	1	PASS	ND	

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State-determined thresholds based on the action limits published in Table 3.1 of 9 A.A.C. 17 and 9 A.A.C. 18. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors. Testing results were obtained according to requirements stated in QMS.100.010.AZ Quality Manual.

Madison Levy

Lab Director

State License # 00000024LCMD66604568 ISO 17025 Accreditation # 97164

Revision: #2 -Corrected harvest date, changed strain name

date

Revision: #1 -

Corrected harvest

Signature 04/02/25

Kaycha Labs 031025 Hybrid Matrix: Concentrate Classification: Hybrid Type: Distillate

Batch Date: 03/31/25 10:38:04

Batch Date: 03/31/25 18:04:32

Certificate of Analysis

Sample: TE50328009-001 Goldsmith Extracts Telephone: (480) 720-3039

Email: goldsmithextracts@gmail.com

Harvest/Lot ID: 031025 Batch #: 031025

Ordered: 03/28/25 Sampled: 03/28/25 Completed: 04/02/25

PASSED

Pages 3 of 5

Pesticide

PASSED

ANALYTES ACTION LEVEL PASS/FAIL RESULT QUALIFIER UNIT LOD

Analyzed by: 410, 152, 547, 545 Extraction date: Weight: Extracted by: 0.5044g 03/31/25 15:48:11

Analytical Batch: TE008234PES
Instrument Used: TE-262 "MS/MS - Pest/Myco 2",TE-117 UHPLC - Pest/Myco 2
Analyzed Date: 04/02/25 19:52:34

Reagent: 032425.R04; 032425.R05; 032425.R07; 030625.R06; 032525.R13; 033125.R10; 033125.R05; 032525.R15; 041823.06

Consumables : 9479291.162; 8000038072; 110424CH01; 220321-306-D; 1009468941; GD240003; 426060-JG

Pipette: TE-062 SN:20C50491; TE-064 SN:20B27672 (100-1000uL)

Pesticide screening is carried out using LC-MS/MS supplemented by GC-MS/MS for volatile pesticides. (Methods: SOP.T.30.500 for sample homogenization, SOP.T.30.104.AZ for sample prep, and SOP.T.40.104.AZ for analysis on ThermoScientific Altis TSQ with Vanquish UHPLC).

Analyzed by: 410, 152, 547, 545 Weight: Extraction date: Extracted by: 0.5044g 03/31/25 15:48:11

Analysis Method : N/A Analytical Batch: TE008247VOL

Instrument Used : TE-117 UHPLC - Pest/Myco 2,TE-262 "MS/MS - Pest/Myco 2

Analyzed Date: 04/02/25 19:52:40

Reagent: 032425.R04; 032425.R05; 032425.R07; 030625.R06; 032525.R13; 033125.R10; 033125.R05; 032525.R15; 041823.06

Consumables: 9479291.162; 8000038072; 110424CH01; 220321-306-D; 1009468941; GD240003; 426060-JG

Pipette: TE-062 SN:20C50491; TE-064 SN:20B27672 (100-1000uL)

Supplemental pesticide screening using GC-MS/MS to quantitatively screen for Chlorfenapyr, Cyfluthrin, Cypermethrin, and Diazinon; as well as the qualitative confirmation of Dichlorvos, Permethrins, Piperonyl Butoxide, Prallethrin, Propiconazole, Pyrethrins, and Tebuconazole which are all quantitatively screened using LC-MS/MS. (Methods: SOP.T.30.500 for sample homogenization, SOP.T.30.104.AZ for sample prep, and SOP.T.40.154.AZ for analysis using a ThermoScietific 1310-series GC equipped with a TriPlus RSH autosampler and detected on a TSQ 9000-series mass spectrometer).

Residual Solvents

PASSED

ANALYTES	UNIT	LOD	LOQ	ACTION LEVEL	PASS/FAIL	RESULT	QUALIFIER
BUTANES	ppm	168.2	2400	5000	PASS	ND	
METHANOL	ppm	87.7	1440	3000	PASS	ND	
PENTANES	ppm	163.9	2400	5000	PASS	ND	
ETHANOL	ppm	142.2	2400	5000	PASS	ND	
ETHYL ETHER	ppm	193.1	2400	5000	PASS	ND	
ACETONE	ppm	37.6	480	1000	PASS	ND	
2-PROPANOL	ppm	156.2	2400	5000	PASS	ND	
ACETONITRILE	ppm	12.2	196.8	410	PASS	ND	
DICHLOROMETHANE	ppm	22.7	288	600	PASS	ND	V1
HEXANES	ppm	8.4	139.2	290	PASS	ND	
ETHYL ACETATE	ppm	179	2400	5000	PASS	ND	
CHLOROFORM	ppm	2.41	28.8	60	PASS	ND	
BENZENE	ppm	0.115	1.2	2	PASS	ND	V1
ISOPROPYL ACETATE	ppm	168.6	2400	5000	PASS	ND	
HEPTANE	ppm	152.8	2400	5000	PASS	ND	
TOLUENE	ppm	26.2	427.2	890	PASS	ND	V1
XYLENES	ppm	53.2	1041.6	2170	PASS	ND	V1

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOO) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State-determined thresholds based on the action limits published in Table 3.1 of 9 A.A.C. 17 and 9 A.A.C. 18. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors. Testing results were obtained according to requirements stated in QMS.100.010.AZ Quality Manual.

Madison Levy

Lab Director

00000024LCMD66604568 ISO 17025 Accreditation # 97164

04/02/25

Signature

Revision: #1 -Corrected harvest date Revision: #2 -Corrected harvest date, changed strain name

Kaycha Labs 031025 Hybrid Matrix: Concentrate Classification: Hybrid Type: Distillate

Pages 4 of 5

Certificate of Analysis

Sample: TE50328009-001 **Goldsmith Extracts** Telephone: (480) 720-3039

Email: goldsmithextracts@gmail.com

Harvest/Lot ID: 031025 Batch #: 031025

Ordered: 03/28/25 Sampled: 03/28/25 Completed: 04/02/25

PASSED

Residual Solvents

PASSED

Batch Date: 03/28/25 18:58:41

ANALYTES		UNIT LOD LOQ ACT	TION LEVEL PASS/FAIL RESULT	QUALIFIER
Analyzed by:	Weight:	Extraction date:	Extracted by:	
224 547 545	0.0200~	03/30/35 10:03:55	224	

Analysis Method: N/A

Analytical Batch : TE008222SOL

Instrument Used: TE-092 "GC - Solvents 1", TE-095 "MS - Solvents 1", TE-098 "Injector - Solvents 1", TE-100 "HS - Solvents 1", TE-113 "Vacuum Pump -

Analyzed Date: 04/01/25 15:11:05

Dilution: N/A

Reagent: 032725.01; 032625.31

Consumables: H109203-1; 430596; 103689; GD240003 Pipette: TE-332 SN: 37797 (25uL); TE-349 SN: 42675

Residual solvents screening is performed using GC-MS which can detect below single digit ppm concentrations. (Method: SOP.T.40.044.AZ for sample prep and analysis via ThermoScientific 1310-series GC equipped with a TriPlus 500 Headspace autosampler and detection carried out by ISQ7000-series mass spectrometer). Butanes are reported as the sum of n-Butane and Isobutane. Pentanes are reported as the sum of n-Pentane, Isopentane, and Neopentane. Hexanes are reported as the sum of n-Hexane, 2-Methylpentane, 3-Methylpentane, and Neopentane. 2,2-Dimethylbutane, and 2,3-Dimethylbutane. Xylenes are reported as the sum of Ethyl Benzene, m-Xylene, p-Xylene, and o-Xylene.

Microbial

PASSED

ANALYTES		UNIT LOD	LOQ	ACTION LEVEL	PASS/FAIL	RESULT	QUALIFIER
SALMONELLA SPP.		pass/fail 0	0	1	PASS	Not Present in 1g	
ASPERGILLUS FLAVUS		pass/fail 1	0	0.999	PASS	Not Present in 1g	
ASPERGILLUS FUMIGATUS		pass/fail 1	0	0.999	PASS	Not Present in 1g	
ASPERGILLUS NIGER		pass/fail 1	0	0.999	PASS	Not Present in 1g	
ASPERGILLUS TERREUS		pass/fail 1	0	0.999	PASS	Not Present in 1g	
ESCHERICHIA COLI (REC)		CFU/g 10	10	100	PASS	<10	
Analyzed by:	Weight:	Extraction dat				Extracted by:	
331, 547, 545	1.0163g	03/31/25 14:23:	:54			331	

Analysis Method: N/A

Analytical Batch: TE008221MIC
Instrument Used: TE-234 "bioMerieux GENE-UP"

Analyzed Date: 04/01/25 12:34:03

Dilution: 10

Reagent: 021825.12; 021825.13; 032725.19; 021825.26; 032725.36; 032725.03; 120524.22; 120524.23; 032825.R24; 022825.41; 022825.50

Pipette: TE-053 SN:20E78952; TE-061 SN:20C35454; TE-062 SN:20C50491; TE-065 SN:20B18327 (100-1000uL); TE-066 SN:20D56970; TE-069 SN:21B23920; TE-109 SN:20B18330;

TE-256 Dispensette S Bottle Top Dispenser SN:20G36073; TE-258

Microbiological screening for bacterial and fungal identification via Polymerase Chain Reaction (PCR) methods consisting of sample DNA amplified via tandem PCR as a crude lysate without purification. (Methods: SOP.T.40.056B for sample prep and screening for Salmonella and Aspergillus sp. by PathogenDx Detectx Combined using a SensoSpot Microarray Analyzer and SOP.T.40.209.AZ for quantitative plating of E. coli on 3M Rapid E. coli Petrifilm and confirmation of Aspergillus sp. on SabDex agar for derivative products). All qualitative microbial testing is reported as detected/not detected in 1g.

Mycotoxins

PASSED

ANALYTES	UNIT	LOD	LOQ	ACTION LEVEL	PASS/FAIL	RESULT	QUALIFIER
TOTAL AFLATOXINS	ppb	1.487	4.851	20	PASS	ND	
AFLATOXIN B1	ppb	1.47	4.851	20	PASS	ND	
AFLATOXIN B2	ppb	1.8	5.94	20	PASS	ND	
AFLATOXIN G1	ppb	1.9	6.27	20	PASS	ND	
AFLATOXIN G2	ppb	3.25	10.725	20	PASS	ND	
OCHRATOXIN A	ppb	4.61	12	20	PASS	ND	

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State-determined thresholds based on the action limits published in Table 3.1 of 9 A.A.C. 17 and 9 A.A.C. 18. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors. Testing results were obtained according to requirements stated in QMS.100.010.AZ Quality Manual.

Madison Levy

Batch Date: 03/28/25 18:18:39

Lab Director

00000024LCMD66604568 ISO 17025 Accreditation # 97164

Signature 04/02/25

Revision: #1 -Corrected harvest date Revision: #2 -Corrected harvest date, changed strain name

Kaycha Labs 031025 Hybrid Matrix: Concentrate Classification: Hybrid Type: Distillate

Batch Date: 03/31/25 18:05:29

Pages 5 of 5

Certificate of Analysis

Sample: TE50328009-001 Goldsmith Extracts Telephone: (480) 720-3039

Email: goldsmithextracts@gmail.com

Harvest/Lot ID: 031025 Batch #: 031025

Ordered: 03/28/25 Sampled: 03/28/25 Completed: 04/02/25

PASSED

Mycotoxins

PASSED

ANALYTES UNIT LOD LOQ **ACTION LEVEL PASS/FAIL RESULT QUALIFIER**

Analyzed by: 410, 152, 547, 545 Weight: **Extraction date:** 0.5044a 03/31/25 15:48:11 410

Analysis Method : N/A Analytical Batch : TE008248MYC

Instrument Used: TE-262 "MS/MS - Pest/Myco 2,TE-117 UHPLC - Pest/Myco 2

Analyzed Date: 04/02/25 19:52:24

Reagent: 032425.R04; 032425.R05; 032425.R07; 030625.R06; 032525.R13; 033125.R10; 033125.R05; 032525.R15; 041823.06 Consumables: 9479291.162; 8000038072; 110424CH01; 220321-306-D; 1009468941; GD240003; 426060-JG

Pipette: TE-062 SN:20C50491; TE-064 SN:20B27672 (100-1000uL)

Aflatoxins B1, B2, G1, G2, and Ochratoxin A analysis using LC-MS/MS. (Methods: SOP.T.30.500 for sample homogenization, SOP.T.30.104.AZ for sample prep, and SOP.T.40.104.AZ for analysis on ThermoScientific Altis TSQ with Vanquish UHPLC). Total Aflatoxins (sum of Aflotoxins B1, B2, G1, G2) must be <20µg/kg. Ochratoxin must be <20µg/kg.

Heavy Metals

PASSED

Batch Date: 03/28/25 18:13:24

ANALYTES		UNIT	LOD	LOQ	ACTION LEVEL	PASS/FAIL	RESULT	QUALIFIER
ARSENIC		ppm	0.066	0.2	0.4	PASS	ND	
CADMIUM		ppm	0.066	0.2	0.4	PASS	ND	
LEAD		ppm	0.166	0.5	1	PASS	ND	
MERCURY		ppm	0.0333	0.1	0.2	PASS	ND	
Analyzed by: 398, 547, 545	Weight: 0.2057g		tion date 25 14:50:				Extracted by: 445	

Analysis Method: N/A

Analytical Batch : TE008220HEA

Instrument Used: TE-051 "Metals Hood",TE-141 "Wolfgang",TE-144,TE-260 "Ludwig",TE-307 "Ted",TE-311 "Ted PC",TE-308 "Ted Chiller",TE-310 "Ted AS",TE-309 "Ted Pump",TE-312 "Ted Monitor",TE-313 "Ted Monitor"

Analyzed Date : 04/01/25 12:53:19

Reagent: 102824.04; 032825.R16; 032525.R14; 100424.06; 022425.01; 090922.04

Consumables: 110424CH01; 220321-306-D; 1009468941; GD240003

Pipette : TE-063 SN:20C50490 (20-200uL); TE-110 SN:20B18338 (100-1000uL); TE-169 SN: 20B16352 (Nitric Acid)

Heavy Metals screening is performed using ICP-MS (Inductively Coupled Plasma – Mass Spectrometer) which can screen down to below single digit ppb concentrations for regulated heavy metals. (Methods: SOP.T.30.500 for sample homogenization, SOP.T.30.084.AZ for sample prep by microwave digestion, and SOP.T.40.084.AZ for analysis by ThermoScientific iCAP RQ ICP-MS).

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State-determined thresholds based on the action limits published in Table 3.1 of 9 A.A.C. 17 and 9 A.A.C. 18. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors. Testing results were obtained according to requirements stated in QMS.100.010.AZ Quality Manual.

Madison Levy

Lab Director

00000024LCMD66604568 ISO 17025 Accreditation # 97164

04/02/25

name

Revision: #1 -Corrected harvest date Revision: #2 -Corrected harvest date, changed strain

Warning: Using Marijuana during pregnancy could cause birth defects or other health issues to your unborn child.

- Product Name = Bulk Distillate
- Strain = Hybrid
- Batch Number = 031025
- Method of Extraction = Ethanol
- Harvest Dates for Flower =

7.01.24 - G6 OG.B18B19B.27.2024. - G6

7.01.24 - Strawnana Gold.B18B.27.2024. - Strawnana Gold

7.2.2024 - AK 1995.B22B.27.2024. - AK 1995

7.4.2024 - Bangers and Mac 1.B20B.27.2024. - Bangers and MAC

Manufacture Date = 3.10.25

Chain of Distribution Packaged/Manufactured By Establishment: ATO: LIFE

CHANGERS LLC (Goldsmith Extracts)

Packaged/Manufactured By Establishment License Number:

0000156ESTDP70697204

Cultivated By Establishment: Cardinal Square, Inc - Sunday Goods

Cultivated By Establishment License Number: 000000114DCPD00232092

Intended Sale Retail Establishments:

Arizona Organix (ARIZONA ORGANIX): 00000095ESIP13817359

Hana Green Valley (Broken Arrow Herbal Center): 00000096DCXQ00231932

Wickenburg Alternative Medicine (WICKENBURG ALTERNATIVE MEDICINE LLC):

00000061DCMK00381513

Deeply Rooted - Desert Boyz: 0000153ESTXW47689762

Valley of The Sun Medical Dispensary: 00000085ESVF25061802

Valley Healing Group Inc - The Good: 00000072ESRF58078256

Kind Meds (KIND MEDS INC): 00000078DCBK00628996

Cjk Inc - Hana Meds PHX: 00000003DC0U00038157

Southern Arizona Integrated Therapies (Green Medicine): 00000071DCCX00288765

Sea Of Green Ilc - Tru bliss: 00000113DCUX00454549

AZCS (ARIZONA CANNABIS SOCIETY INC): 00000090DCYT00194857

Medusa Farms AZ (VERDE DISPENSARY INC): 00000089DCQY00546716

Rch Wellness Center - Noble Herb: 00000069DCFG00710475

Copper State Herbal Center Inc - Botanica: 00000127ESET80222360

Phoenix Relief Center - Phoenix Relief Center: 00000095DCVW00172644

Curaleaf Central (NATURAL HERBAL REMEDIES INC): 00000053DXB00858835

Natural Remedy (NATURAL REMEDY PATIENT CENTER): 00000125ESMC92036121

Green Hills Patient Center Inc - Fountain Hills: 00000051DCYH00987523

Giving Tree Dispensary: 000000021DCLU00461342

The Giving Tree Wellness Center (THE GIVING TREE WELLNESS CENTER OF

NORTH PHOENIX INC): 00000021DCLU00461342

Nature's Wonder Dispensary (NATURE'S WONDER INC): 00000035DCCB00049778